Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Perfusion ; : 2676591231168285, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2283552

ABSTRACT

INTRODUCTION: Iliopsoas haematoma (IPH) during extracorporeal membrane oxygenation (ECMO) is a rare bleeding complication that can be fatal due to its progression to abdominal compartment syndrome, but its incidence and risk factors are not well known. We have previously reported an IPH incidence rate of 16% in Japan. Among possible reasons for this high incidence, ethnicity has been hypothesised to play a role. Therefore, we used an international multi-centre cohort registry to test this hypothesis by determining the incidence rate of IPH. METHODS: This study was performed using the COVID-19 Critical Care Consortium database, conducted in 30 countries across five continents between 3 January 2020, and 20 June 2022. RESULTS: Overall, 1102 patients received ECMO for COVID-19-related acute respiratory distress syndrome. Of them, only seven were reported to have IPH, indicating an incidence rate of 0.64%, with comparable rates between the countries. The IPH group tended to have a higher mortality rate (71.4%) than the non-IPH group (51%). CONCLUSIONS: Overall incidence of IPH in the studied COVID-19 ECMO cohort was 0.64%. Most cases were reported from Japan, Belgium, and Italy. In our study, this rare complication did not appear to be confined to Asian patients. Due to the high fatality rate, awareness about the occurrence of IPH should be recognised.

2.
PLoS One ; 17(7): e0271391, 2022.
Article in English | MEDLINE | ID: covidwho-1933386

ABSTRACT

Lung ultrasound (LUS), a rapid, bedside, goal-oriented diagnostic test, can be quantitatively assessed, and the scores can be used to evaluate disease progression. However, little data exists on predicting prolonged mechanical ventilation (PMV) and successful extubation using serial LUS scores. We examined the relationship of PMV with successful extubation in patients with severe coronavirus disease (COVID-19) by using two types of serial LUS scores. One LUS score evaluated both the pleura and lung fields, while the other assessed each separately (modified-LUS score). Both LUS scores were determined for 20 consecutive patients with severe COVID-19 at three timepoints: admission (day-1), after 48 h (day-3), and on the seventh follow-up day (day-7). We compared LUS scores with the radiographic assessment of the lung oedema (RALE) scores and laboratory test results, at the three timepoints. The PMV and successful extubation groups showed no significant differences in mortality, but significant differences occurred on day-3 and day-7 both LUS scores, day-7 RALE score, and day-7 PaO2/FiO2 ratio, in the PMV group (p<0.05); and day-3 and day-7 modified-LUS scores, day-7 C-reactive protein levels, and day-7 PaO2/FiO2 ratio, in the successful extubation group (p<0.05). The area under the curves (AUC) of LUS scores on day-3 and day-7, modified-LUS scores on day-3 and day-7,RALE score on day-7, and PaO2/FiO2 ratio on day-7 in the PMV group were 0.98, 0.85, 0.88, 0.98, 0.77, and 0.80, respectively. The AUC of modified-LUS scores on day-3 and day-7, C-reactive protein levels on day-7, and PaO2/FiO2 ratio on day-7 in the successful extubation group were 0.79, 0.90, 0.82, and 0.79, respectively. The modified-LUS score on day 7 was significantly higher than that on day 1 in PMV group (p<0.05). While the LUS score did not exhibit significant differences. The serial modified-LUS score of patients with severe COVID-19 could predict PMV.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , C-Reactive Protein , COVID-19/diagnostic imaging , COVID-19/therapy , Cohort Studies , Humans , Lung/diagnostic imaging , Respiration, Artificial , Respiratory Sounds , Ultrasonography/methods
3.
Thromb J ; 19(1): 55, 2021 Aug 16.
Article in English | MEDLINE | ID: covidwho-1808372

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) pneumonitis associated with severe respiratory failure is associated with high mortality. The pathogenesis of COVID-19 is associated with microembolism or microvascular endothelial injuries. Here, we report that syndecan-1 (SDC-1), a component of the endothelial glycocalyx, may be a biomarker of severity classification for COVID-19 related to endothelial injury. METHODS AND ANALYSIS: We analyzed the data of COVID-19 patients for 1 year from February 2020 at Yokohama City University Hospital and Yokohama City University Medical Center Hospital. We selected COVID-19 patients who required admission care, including intensive care, and analyzed the classification of severe and critical COVID-19 retrospectively, using various clinical data and laboratory data with SDC-1 by ELISA. RESULTS: We analyzed clinical and laboratory data with SDC-1 in five severe COVID-19 and ten critical COVID-19 patients. In the two groups, their backgrounds were almost the same. In laboratory data, the LDH, CHE, and CRP levels showed significant differences in each group (P = 0.032, P < 0.0001, and P = 0.007, respectively) with no significant differences in coagulation-related factors (platelet, PT-INR, d-dimer, ISTH score; P = 0.200, 0.277, 0.655, and 0.36, respectively). For the clinical data, the SOFA score was significantly different from admission day to day 14 of admission (p < 0.0001). The SDC-1 levels of critical COVID-19 patients were significantly higher on admission day and all-time course compared with the levels of severe COVID-19 patients (P = 0.009 and P < 0.0001, respectively). CONCLUSIONS: Temporal change of SDC-1 levels closely reflect the severity of COVID-19, therefore, SDC-1 may be a therapeutic target and a biomarker for the severity classification of Covid-19.

4.
PLoS One ; 16(8): e0256022, 2021.
Article in English | MEDLINE | ID: covidwho-1352710

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic rapidly increases the use of mechanical ventilation (MV). Such cases further require extracorporeal membrane oxygenation (ECMO) and have a high mortality. OBJECTIVE: We aimed to identify prognostic biomarkers pathophysiologically reflecting future deterioration of COVID-19. METHODS: Clinical, laboratory, and outcome data were collected from 102 patients with moderate to severe COVID-19. Interleukin (IL)-6 level and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA copy number in plasma were assessed with ELISA kit and quantitative PCR. RESULTS: Twelve patients died or required ECMO owing to acute respiratory distress syndrome despite the use of MV. Among various variables, a ratio of oxygen saturation to fraction of inspired oxygen (SpO2/FiO2), IL-6, and SARS-CoV-2 RNA on admission before intubation were strongly predictive of fatal outcomes after the MV use. Moreover, among these variables, combining SpO2/FiO2, IL-6, and SARS-CoV-2 RNA showed the highest accuracy (area under the curve: 0.934). In patients with low SpO2/FiO2 (< 261), fatal event-rate after the MV use at the 30-day was significantly higher in patients with high IL-6 (> 49 pg/mL) and SARS-CoV-2 RNAaemia (> 1.5 copies/µL) compared to those with high IL-6 or RNAaemia or without high IL-6 and RNAaemia (88% vs. 22% or 8%, log-rank test P = 0.0097 or P < 0.0001, respectively). CONCLUSIONS: Combining SpO2/FiO2 with high IL-6 and SARS-CoV-2 RNAaemia which reflect hyperinflammation and viral overload allows accurately and before intubation identifying COVID-19 patients at high risk for ECMO use or in-hospital death despite the use of MV.


Subject(s)
COVID-19/mortality , Interleukin-6/blood , RNA, Viral/metabolism , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Area Under Curve , COVID-19/pathology , COVID-19/virology , Female , Hospital Mortality , Humans , Male , Middle Aged , Oxygen Consumption , Prognosis , Prospective Studies , ROC Curve , Respiration, Artificial , SARS-CoV-2/isolation & purification , Viral Load
5.
Respir Med Case Rep ; 33: 101383, 2021.
Article in English | MEDLINE | ID: covidwho-1122418

ABSTRACT

Computed tomography (CT) is the most reliable method to evaluate the progression of COVID-19 pneumonitis. However, in a pandemic, transportation of critically ill invasively ventilated patients to radiology facilities is challenging, especially for those on extracorporeal membrane oxygenation (ECMO). Notably, lung ultrasound (LUS) is a favored alternative imaging modality due to its ease of use at the point of care, which reduces the infectious risk of exposure and transmission; repeatability; absence of radiation exposure; and low cost. We demonstrated that serial LUS compares favorably with other imaging modalities in terms of usefulness for evaluating lung aeration and recovery in an ECMO-managed COVID-19 patient.

6.
J Med Ultrason (2001) ; 48(1): 31-43, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1028982

ABSTRACT

In the coronavirus disease-2019 (COVID-19) era, point-of-care lung ultrasound (LUS) has attracted increased attention. Prospective studies on LUS for the assessment of pneumonia in adult patients were extensively carried out for more than 10 years before this era. None of these prospective studies attempted to differentiate bacterial and viral pneumonia in adult patients using LUS. The majority of studies considered the LUS examination to be positive if sonographic consolidations or multiple B-lines were observed. Significant differences existed in the accuracy of these studies. Some studies revealed that LUS showed superior sensitivity to chest X-ray. These results indicate that point-of-care LUS has the potential to be an initial imaging modality for the diagnosis of pneumonia. The LUS diagnosis of ventilator-associated pneumonia in intensive care units is more challenging in comparison with the diagnosis of community-acquired pneumonia in emergency departments due to the limited access to the mechanically ventilated patients and the high prevalence of atelectasis. However, several studies have demonstrated that the combination of LUS findings with other clinical markers improved the diagnostic accuracy. In the COVID-19 era, many case reports and small observational studies on COVID-19 pneumonia have been published in a short period. Multiple B-lines were the most common and consistent finding in COVID-19 pneumonia. Serial LUS showed the deterioration of the disease. The knowledge and ideas on the application of LUS in the management of pneumonia that are expected to accumulate in the COVID-19 era may provide us with clues regarding more appropriate management.


Subject(s)
Lung/diagnostic imaging , Pneumonia/diagnostic imaging , Point-of-Care Systems , COVID-19/diagnostic imaging , Community-Acquired Infections/diagnostic imaging , Humans , Pneumonia, Bacterial/diagnostic imaging , Pneumonia, Ventilator-Associated/diagnostic imaging , SARS-CoV-2 , Ultrasonography
8.
Acute Med Surg ; 7(1): e509, 2020.
Article in English | MEDLINE | ID: covidwho-102563

ABSTRACT

BACKGROUND: Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is one of the ultimate treatments for acute respiratory failure. However, the effectiveness of ECMO in patients with novel coronavirus disease (COVID-19) is unknown. CASE PRESENTATION: A 72-year-old woman who was a passenger of a cruise ship tested positive for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) while in quarantine on board using throat swab. Three days after admission, her condition deteriorated, and she was subsequently intubated. On day 6, VV-ECMO was introduced. Lopinavir/ritonavir was given; continuous renal replacement therapy was also introduced. On day 10, her chest radiography and lung compliance improved. She was weaned off ECMO on day 12. CONCLUSION: Treatment of severe pneumonia in COVID-19 by ECMO should recognize lung plasticity considering time to ECMO introduction and interstitial biomarkers. In Japan, centralization of ECMO patients has not been sufficient. Thus, we suggest nationwide centralization and further research to respond to the crisis caused by COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL